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Abstract. In this paper, we consider on the thermally relativistic nonequilibrium flows in the flat or curved spacetime. In the
flat spacetime, the supersonic thermally relativistic flow around the prism is numerically analyzed using the Anderson-Witting
model. Obtained numerical results show that the flowfield is remarkably different from that obtained by the Bhatnagar-Gross-
Krook equation, which is the nonrelativistic limit of the Anderson-Witting model. Additionally, the sign of the dynamic
pressure is opposite to that obtained by the Navier-Stokes-Fourier law on the basis of the Eckart decomposition. Finally,
the thermally relativistic flow in the curved spacetime is numerically analyzed by solving the general relativistic Anderson-
Witting model and the Einstein’s equation simultaneously. In curved spacetime, nongravitational flow is induced owing to
the local dependency of the equilibrium function on the local metric of curved spacetime. Such a flow is confirmed by the
nongravitational initial cluster inside the stuffed black hole.
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INTRODUCTION

The relativistic hydrodynamics becomes so significant in the field of the high energy physics. In particular, the
necessities of the theoretical descriptions on the experimental results via the RHIC (Relativistic Heavy lon Collider)
are enhanced. For example, the behavior of the Quark-Gluon Plasma must be analyzed by solving Wong-Boltzmann
equation coupled to the Yang-Mills equation [1]. On the other hand, the relativistic hydrodynamics is not established
yet due to some unsolved problem. One is the incomplete decomposition method. The other is the problem of the
causality, which is caused by the diffusion term in the relativistic Navier-Stokes-Fourier (NSF) equation, whereas the
problem of the causality is not involved in the relativistic Boltzmann equation. As the most classic decomposition, the
Eckart decomposition [2] is well known. On the other hand, Kunihiro et al. [3] show that the Eckart decomposition
is not complete formalism, when we introduce the relativistic NSF equation. However, the Israel-Stewart equation
[4], which replaces parts of the heat flux and the pressure deviator in the NSF equation by Grad’s moment equation to
avoid the problem of the causality, includes the problem of propagation limit involved in the Grad’s moment equations.
To avoid some troublesome problems involved in the relativistic hydrodynamic equation, we focus on the Anderson-
Witting (A.W.) model [5][6], which is the reduced model of the relativistic Boltzmann equation. Conserved quantities,
the number density, velocity and temperature, which are needed to determine the relativistic equilibrium function
namely Maxwell-dittner function [5], can be correctly decomposed via the Eckart decomposition. Then, thermally
relativistic nonequilibrium flows in the flat or curved spacetime are analyzed using the A.W. model. Thermally
relativistic state is characterized By { = mc®/(k6) < 100, in whichmis the mass of a particlejs the speed of light,

k is the Boltzmann constant arfllis the temperature. As an object of analysis, the supersonic thermally relativistic
flow around the prism, which includes hydrodynamically interesting problems such as the shock, expansion, boundary
layer and vortex, is considered. The numerical result obtained by the A.W. model is compared with that obtained by
the Bhatnagar-Gross-Krook (BGK) model [5], which is the nonrelativistic limit of the A. W. model. The differences
between the numerical results obtained by the A. W. model and those obtained by the BGK model are remarkable,
when we compare the profiles of the number density and temperature along the stagnation streamline (SSL) obtained
by both of models. The sign of the dynamic pressure is opposite to that obtained by the NSF law. Such an abnormal
profile of the dynamic pressure obtained by the A. W. model implies the insufficiency of the Eckart decomposition.
As an extension to the general relativistic flows, the thermally relativistic flow in the curved spacetime is numerically
analyzed by solving the nongravitational initial cluster inside the stuffed black hole. Such a nongravitational cluster
is described by the dependency of the general relativistic Maxwéler function on the local metric of the curved
spacetime. Here, the Einstein’s equation is solved using the Z4 formalism [7] by coupling to the general relativistic A.
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ANDERSON-WITTING MODEL

In this section, the A. W. model is revisited. For the general expression, the general relativistic A. W. model is
discussed, because the A. W. model in flat spacetime is the special case of the general relativistic A. W. model.
The general relativistic Boltzmann equation with the distribution function based on four-momeHtismvritten as:
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of i of
|O“W—r',,vlo“p”Tpi =L[f],
_Ylpu (0 (0) (yH pH) — n U
L[f]— 27 (f —f) where Y p )—4— ZCkeKZ(Z)e ko ) 1)

where f is the distribution function defined bfy= f(x*,p'), (i = 1,2,3), I'},, is the Christoffel symbolf(© is the
Maxwell Jittner function, and>({) is the modified Bessel function of the second kind. In numerical analysis, the
treatment of momentum space is difficult, becap8eapproaches infinity as the velocity of particles approaches the
speed of light.7 in eq. (1) is defined by:
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where¥ = K3({)/K2(Z), in whichKz({) is the modified Bessel function of the third kind, aods the total cross
section of the collision [5]Uf in eq. (1) is the four-velocity of the flow defined by Landau-Lifshitz as [5]
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wherep is the static pressure definedms- nk@, g# is the four-heat flux and is the energy density.
As a result of eq. (1), the accurate numerical integration of the distribution function in momentum space becomes
difficult when the number of particles with velocity near the speed of light is nonnegligible. The use of velocity space
instead of momentum space as the phase space of the distribution function is therefore expected to yield a more
accurate integration of the distribution function, because the velocity space is bounded by the metric [5]. For accurate
integration, we must therefore derive the general relativistic Boltzmann equation on the basis of the velocity space
instead of the momentum space, namé(y-, p') — f(x#, V).
The Liouville law gives the following relation for the distribution function:
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Here, 7" = 1/m, wheret is the proper time anthis the mass of a particle.
To derivedV /dT*, we use the equation of motion of a particle under a gravitational field:
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wherel (v) is defined as follows by using a (3+1) ADM system [7] with the lapséntrinsic curvatureyj, and zero
shift 3' =0[7]:
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From eq. (6)¥ < a, and thugp' = dV /dt is defined as
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where.” and.%; in eq. (7) are defined as
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Substituting eq. (7) into eq. (4) yields the general relativistic A. W. model based on the velocity space: [8]
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wherec is the speed of light in the Minkowski metric agd= det(g,, ), in whichgy, is the metric tensor.
Rewriting eq. (10) with momentum spaé’ replaced by velocity space? yields the following:
NH = m30/ , F(v)>vHfgddv, TH = m4c/ . F(v)SvHv £, /gdv. (11)
v v

The Eckart decomposition [2] yields the projected moments, number demsfisessure deviatop<HV>, static
pressurep, dynamic pressuras, and energy per partickeas follows: [2] [5]
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where UK = T(u)u¥, in which u* = (c,u), U is the flow velocity of thei-th component andr(u) =
aZ—yjuiul/c2, and whered, = I'(u)uy, in which u, = (a?c,—uly;) is the covariant four velocity of the
flow [2]. The projector),y is defined as [2] [5]
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THERMALLY RELATIVISTIC NONEQUILIBRIUM FLOW IN FLAT SPACETIME

In this section, the thermally relativistic flow in the flat spacetime, namgly= nuv = (1,-1,—-1,—1), is considered.
To discuss the obtained numerical results in the framework of the NSF law via the Eckart decomposition, the relativistic
NSF law in flat spacetime is written as follows [5]:
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wheren is the bulk viscosityu is the viscosity coefficient} is the thermal conductivity anltk = ne+ p.

As an object of analysis, the supersonic thermally relativistic flow around the prism, which includes hydrodynamically
interesting problems such as the shock, expansion, boundary layer and vortex, is considered. The numerical result
obtained by the A.W. model is compared with that obtained by the Bhatnagar-Gross-Krook (BGK) model, which is the
nonrelativistic limit of the A. W. model. For easier comprehension of physical conditions, for the observer’s frame the
absolute standard of rest is used as the hypothetical inertial frame. We usg instead of(x}, x2, x3) and (v, W, ?)

instead of(v!,v2,v3). The velocity corresponding to uniform flowi = 0.6¢c, W = 0, u? = 0. The temperature of the

uniform flow is 8., = m&/45k ({» = 45). Under these conditions, the Mach number of uniform flow calculated from

eq. (2) is3.247( .- vs = 0.185317%). The temperature of the wall &, = mc®/30k (,, = 30) and the complete diffusive
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FIGURE 1. Schematic view of the flowfield (Left) and bird’s eye view of the profile of the dynamic pressure (Right).

wall is used. In eq. (2410 /L? = 10. Molecules are all assumed to be monatomic hard-sphere molecules. For the
numerical grid(v*,W,v*,x,y) = (64,64, 64,125 60). Figure 1 shows the schematic view of the flowfield in its left side

(Left) and bird’s eye view of the profile of the dynamic pressure ety plane in its right side (Right). As shown in Fig.

1 (Left), the vertex angle of the prism120degrees. The dynamic pressure in Fig. 1 (Right) is remarkable inside the
shock structure and near the wall, and the sign of the dynamic pressure is opposite to that approximated by the NSF law
in eg. (14). Such an abnormal behavior of the dynamic pressure implies the insufficiency of the Eckart decomposition.
The BGK model is solved using the same Mach number to clarify the relativistic effects such as the Lorentz contract
[5] or the thermally relativistic effect [6], which changes thermodynamic properties of matters §s< 100. Figure

2 (Left) shows profiles of the number density and temperature along SSL obtained by the A. W. and BGK models.
As shown in Fig. 2 (Left), there are remarkable differences between profiles obtained by the A. W. model and those
obtained by the BGK model. The number density and temperature behind the shock obtained by the A. W. model are
higher than those obtained by the BGK model, because fluxes of the number density, momentum and energy increase
owing to the decrease of the volume by the Lorentz contract. In the low velocity regime such as thermally boundary
layer behind the shock, thermally relativistic effects are significant, becaugg;the 5.7 behind the shock is enough

small to change thermodynamic properties of matters. Actually, there are remarkable differences between profiles of
the number density and temperature in the thermally boundary layer obtained by the A. W. model and those obtained
by the BGK model. Figure 2 (Right) shows profiles of heat fifi;along the stagnation streamlirgg.is approximated

from eq. (16) by using the N.S.F law. From the spatial gradierét ahd p, (o) s @approximated by the NSF law is
introduced from eq. (16). We define the heat flux by the gradient of the temperat(g® gs- = A 0?6 and by the

gradient of the static pressure ), o = —A 7 OP. AS & result(q*)ysg = (§)nse+ (df) g FOF results from
the A. W. model, Figure 2 (Right) shows*)ysr together withg* along the stagnation streamline on the ieéixis,

and on the righy axis, Fig. 2 (Right) shosz(qf,)NSF/(q{)NSF\ along the stagnation streamline, which is the ratio

of absolute values ofty) s and (q’é)NSF. The thermal conductivitp from the A. W. model, which is necessary

for the calculation of )y sp (GF)nse @nd (q’é)NSF, is given by [5]. As shown in Fig. 2 (Righti* < (g*)ysg Near

2.4 < —X/R < 3.0 in the shock structure indicates significant effects by the terms from the Burnett equation. Near
—X/R= 1.4, | (df) \yse/ (@ )nsk| exhibits a maximum value. As shown in Fig. 2 (Right), the heat flux calculated by

the gradient of the isotropic pressu(q}g)NSF, is nonnegligible for the calculated heat flgkin this problem.

THERMALLY RELATIVISTIC NONEQUILIBRIUM FLOW IN CURVED SPACETIME

The flow in the curved spacetime is induced exclusively by the gravitational force, which is revealed by the term
Y'af/ov in eq. (9), when particles are thermally nonrelativistic (i20? < ). When particles are thermally
relativistic (i.e.,1 < { < 107) or thermally ultrarelativistic (i.e.,{ < 1)), however, the flow in curved spacetime

is also induced by gravitational-force-free particle motion, which is revealed by thevtérfyiox' in eq. (9). This
nongravitational thermally relativistic flow is caused by the dependence of the equilibrium function, or the so-called
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FIGURE 2. Profiles of number density and temperature along SSL (Left)géuaahd| (o5 ) (@)nse| along SSL (Right).

NSF/

Maxwell-Jittner function [5], on the local lapse and intrinsic curvature. As an object of analysis, we consider on the
nongravitational initial cluster inside the stuffed black hole. A stuffed black hole [7] is a black hole whose inward
spacetime of the Schwarzschild radi&s, is described using the FRW (Friedmann-Robertson-Walker) metric in the
closed case and whose outward spacetime is described using the Schwarzschild metric. The particRsdnside
uniformly distributed. Here, we consider a stuffed black hole that has relativistic thermal energy. The initial gauge
condition of a thermally relativistic stuffed black hole in isotropic coordinates [7] is

a=1, Yjo=05%,
-2
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where the subscrip0" indicates the initial stateV is the mass of the black hol,is the gravitational constany,; is
Kronecker’s delta function, ans is given by
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wherert is the energy density.

To simplify the analytical discussion, we use a spherically symmetric distribution funétion,v') = f (t,r,v', 3, ¢),
becausef (t,r,V',9,¢) is spherically symmetric owing to the spherical symmetry of the FRW metric and is
uniform in the directions of9 and ¢, where the Cartesian coordinatés,x?,x3) are converted into spher-

ical coordinates(r,3,¢) via the relations (x},x?,x3) = (rsing cosp,rsind sing,rcosp) and (V1,v2v3) =

(V' sind cosg, V' sind sing, V' cosd), in which 0 < 8 < m/2 and 0 < ¢ < m. Assuming that the number den-

sity is uniform (i.e.,n = ny), that the flow velocity is zero, and that the temperature is uniform @.e-,6.), then

from egs. (1) and (17), the initial equilibrium distribution functionfi€) = N,/ (4TM2ckBK) & %=/ V1~ H(V)2/e?,
wherel, = mc?/(k8s). Figure 3 (Left) shows the initial state of the distribution function for three pointd, i and

i+ 1, along the radial axis, wherer;_, rj, r.H < Rs. This figure reveals that the shape of the distribution function for
each of these three points? (0,r'=1 V"), 1©)(0,r' V') and f(©(0,r"*1 V'), depends om;j given by eq. (17) from eq.

(1). Here, we considef (At,r',v'), whereAt < 1. For this case, the negative velocity tail Bf)(0,r'*1,v"), which

inflows into the negative tail of @ (At,r', V'), is higher than that of 9 (0,r',v'), whereas the positive velocity tail of
£(©(0,r'=1,v"), which inflows into the positive tail of ) (At,r',v"), is lower than that of ©)(0,r',v"). DuringAt, the
number of particles inflowing from*1 into r' with the negative/ is higher than that inflowing from—L into r' with

the positiveV'. Consequentlyf (At,r', —|V'|) > f(At,r',|V]), thus leading to a negative flow velocity, which is equiv-
alent to the cluster of a particle |nto the origin, namely, the center of the black hole. Slicing parameters are determined
to yield the constant local maximum spee/ipg to avoid the numerical formation of tachyons, which is indicated

by the inflow of particles in the shaded domainfé® (0,r',V') into r'~1 in Fig. 3 (Left). In the presence of particle
collisions, such a cluster is confirmed numerically by simultaneously solving the nongravitational general relativistic
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FIGURE 3. Initial distribution functions insid&s (Left) and flow vectors at/t., = 0.09 (Right).

A. W. model and Einstein’s equation based on the Z4 formalism. The nongravitational general relativistic A. W. model
indicated byy' = 0 in eq. (9). For numerical analysis, we consider only the cubic doixily|,|z] < Rs/10. The

number density, velocity, temperature and gauge variables of the Z4 formalism at the boundary are fixed at their initial
values. Once particles and gauge variables move from the calculated cubic domain to the outer boundary, they never
return to the calculated cubic-domain. Namely, the nonreflecting boundary condition is used. For the numerical grid,
we use the Cartesian gridx,y,z, vV*,W,v*) = (39,39,39,48,48 48) First, we nondimensionalize the macroscopic
physical quantities and s&/c? = 1/(n.mL2), whereL. is a representative length. Then, we set the normalized
initial macroscopic quantities ag'ne, = 1, {w = M/ (kb,) = 45andu’ /c = 0, and define the initial energy density

To in eq. (18) a0/ (NumM) = 1.032 which yieldsRs/L. = 0.085from eq. (18), andto /L2 = 10in eq. (2). The

initial conditions of the lapser and intrinsic curvaturgs; are given by eq. (17). Einstein’s equation is then modified
using the results estimated using the nongravitational general relativistic A. W. model [8]. Figure 3 (Right) shows the
flow vectors at /t., = 0.09 and numerically confirms the cluster at the origin as predicted by analytical discussions.

CONCLUSIONS

In this paper, we considered on the thermally relativistic flows in the flat or curved spacetime by solving the A.
W. model. From obtained numerical results in the case of the flat spacetime, the abnormal behavior of the dynamic
pressure implies the insufficiency of the Eckart decomposition. Additionally, the contribution of the gradient of the
pressure to the heat flux is nonnegligible. From obtained numerical results in the case of the curved spacetime,
the nongravitational thermally relativistic flow induced by the local gradient of the metric of the curved spacetime
exists inside the stuffed black hole, because the local equilibrium function depends on the local metric of the curved
spacetime.
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